Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.865
1.
PLoS One ; 19(5): e0303371, 2024.
Article En | MEDLINE | ID: mdl-38728352

Marek's disease (MD) is an important neoplastic disease caused by serotype 1 Marek's disease virus (MDV-1), which results in severe economic losses worldwide. Despite vaccination practices that have controlled the MD epidemic, current increasing MD-suspected cases indicate the persistent viral infections circulating among vaccinated chicken farms in many countries. However, the lack of available information about phylogeny and molecular characterization of circulating MDV-1 field strains in Taiwan reveals a potential risk in MD outbreaks. This study investigated the genetic characteristics of 18 MDV-1 strains obtained from 17 vaccinated chicken flocks in Taiwan between 2018 and 2020. Based on the sequences of the meq oncogene, the phylogenetic analysis demonstrated that the circulating Taiwanese MDV-1 field strains were predominantly in a single cluster that showed high similarity with strains from countries of the East Asian region. Because the strains were obtained from CVI988/Rispens vaccinated chicken flocks and the molecular characteristics of the Meq oncoprotein showed features like vvMDV and vv+MDV strains, the circulating Taiwanese MDV-1 field strains may have higher virulence compared with vvMDV pathotype. In conclusion, the data presented demonstrates the circulation of hypervirulent MDV-1 strains in Taiwan and highlights the importance of routine surveillance and precaution strategies in response to the emergence of enhanced virulent MDV-1.


Chickens , Herpesvirus 2, Gallid , Marek Disease , Oncogene Proteins, Viral , Phylogeny , Animals , Chickens/virology , Taiwan/epidemiology , Marek Disease/virology , Marek Disease/prevention & control , Herpesvirus 2, Gallid/genetics , Herpesvirus 2, Gallid/pathogenicity , Virulence/genetics , Oncogene Proteins, Viral/genetics , Poultry Diseases/virology , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control , Marek Disease Vaccines/genetics , Marek Disease Vaccines/immunology , Vaccination/veterinary
2.
J Med Virol ; 96(5): e29652, 2024 May.
Article En | MEDLINE | ID: mdl-38727029

Human papillomavirus (HPV) genotyping is widely used, particularly in combination with high-risk (HR) HPV tests for cervical cancer screening. We developed a genotyping method using sequences of approximately 800 bp in the E6/E7 region obtained by PacBio single molecule real-time sequencing (SMRT) and evaluated its performance against MY09-11 L1 sequencing and after the APTIMA HPV genotyping assay. The levels of concordance of PacBio E6/E7 SMRT sequencing with MY09-11 L1 sequencing and APTIMA HPV genotyping were 100% and 90.8%, respectively. The sensitivity of PacBio E6/EA7 SMRT was slightly greater than that of L1 sequencing and, as expected, lower than that of HR-HPV tests. In the context of cervical cancer screening, PacBio E6/E7 SMRT is then best used after a positive HPV test. PacBio E6/E7 SMRT genotyping is an attractive alternative for HR and LR-HPV genotyping of clinical samples. PacBio SMRT sequencing provides unbiased genotyping and can detect multiple HPV infections and haplotypes within a genotype.


Genotype , Genotyping Techniques , Papillomaviridae , Papillomavirus Infections , Humans , Papillomavirus Infections/virology , Papillomavirus Infections/diagnosis , Female , Genotyping Techniques/methods , Papillomaviridae/genetics , Papillomaviridae/classification , Papillomaviridae/isolation & purification , Sensitivity and Specificity , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/diagnosis , Sequence Analysis, DNA/methods , Early Detection of Cancer/methods , Oncogene Proteins, Viral/genetics , DNA, Viral/genetics , High-Throughput Nucleotide Sequencing/methods
3.
mBio ; 15(5): e0072924, 2024 May 08.
Article En | MEDLINE | ID: mdl-38624210

The integration of HPV DNA into human chromosomes plays a pivotal role in the onset of papillomavirus-related cancers. HPV DNA integration often occurs by linearizing the viral DNA in the E1/E2 region, resulting in the loss of a critical viral early polyadenylation signal (PAS), which is essential for the polyadenylation of the E6E7 bicistronic transcripts and for the expression of the viral E6 and E7 oncogenes. Here, we provide compelling evidence that, despite the presence of numerous integrated viral DNA copies, virus-host fusion transcripts originate from only a single integrated HPV DNA in HPV16 and HPV18 cervical cancers and cervical cancer-derived cell lines. The host genomic elements neighboring the integrated HPV DNA are critical for the efficient expression of the viral oncogenes that leads to clonal cell expansion. The fusion RNAs that are produced use a host RNA polyadenylation signal downstream of the integration site, and almost all involve splicing to host sequences. In cell culture, siRNAs specifically targeting the host portion of the virus-host fusion transcripts effectively silenced viral E6 and E7 expression. This, in turn, inhibited cell growth and promoted cell senescence in HPV16+ CaSki and HPV18+ HeLa cells. Showing that HPV E6 and E7 expression from a single integration site is instrumental in clonal cell expansion sheds new light on the mechanisms of HPV-induced carcinogenesis and could be used for the development of precision medicine tailored to combat HPV-related malignancies. IMPORTANCE: Persistent oncogenic HPV infections lead to viral DNA integration into the human genome and the development of cervical, anogenital, and oropharyngeal cancers. The expression of the viral E6 and E7 oncogenes plays a key role in cell transformation and tumorigenesis. However, how E6 and E7 could be expressed from the integrated viral DNA which often lacks a viral polyadenylation signal in the cancer cells remains unknown. By analyzing the integrated HPV DNA sites and expressed HPV RNAs in cervical cancer tissues and cell lines, we show that HPV oncogenes are expressed from only one of multiple chromosomal HPV DNA integrated copies. A host polyadenylation signal downstream of the integrated viral DNA is used for polyadenylation and stabilization of the virus-host chimeric RNAs, making the oncogenic transcripts targetable by siRNAs. This observation provides further understanding of the tumorigenic mechanism of HPV integration and suggests possible therapeutic strategies for the development of precision medicine for HPV cancers.


DNA, Viral , Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Virus Integration , Humans , Female , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/genetics , Virus Integration/genetics , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus Infections/virology , Papillomavirus Infections/genetics , DNA, Viral/genetics , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Cell Line, Tumor , Oncogenes/genetics , Polyadenylation
4.
BMC Cancer ; 24(1): 442, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600473

Head and neck cancers, particularly oropharyngeal cancers (OPC), have been increasingly associated with human papillomavirus (HPV) infections, specifically HPV16. The current methods for HPV16 detection primarily rely on p16 staining or PCR techniques. However, it is important to note the limitations of conventional PCR, as the presence of viral DNA does not always indicate an ongoing viral infection. Moreover, these tests heavily rely on the availability of tissue samples, which can present challenges in certain situations. In this study, we developed a RT-qPCR biplex approach to detect HPV16 oncogenes E6 and E7 RNA in saliva samples from OPC patients. Salivary supernatant was used as the liquid biopsy source. We successfully obtained RNA from salivary supernatant, preserving its integrity as indicated by the detection of several housekeeping genes. Our biplex approach accurately detected E6 and E7 RNA in HPV16-positive cell lines, tissues, and finally in OPC salivary samples. Importantly, the assay specifically targeted HPV16 and not HPV18. This biplexing technique allowed for reduced sample input without compromising specificity. In summary, our approach demonstrates the potential to detect viable HPV16 in saliva from OPC patients. Since the assay measures HPV16 RNA, it provides insights into the transcriptional activity of the virus. This could guide clinical decision-making and treatment planning for individuals with HPV-related OPC.


Oncogene Proteins, Viral , Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Human papillomavirus 16/genetics , Saliva/metabolism , Papillomavirus Infections/diagnosis , Papillomavirus Infections/genetics , Papillomavirus Infections/complications , Oncogene Proteins, Viral/genetics , Oropharyngeal Neoplasms/pathology , RNA , Polymerase Chain Reaction , Papillomavirus E7 Proteins/genetics
5.
Nat Commun ; 15(1): 3531, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38670961

E6AP dysfunction is associated with Angelman syndrome and Autism spectrum disorder. Additionally, the host E6AP is hijacked by the high-risk HPV E6 to aberrantly ubiquitinate the tumor suppressor p53, which is linked with development of multiple types of cancer, including most cervical cancers. Here we show that E6AP and the E6AP/E6 complex exist, respectively, as a monomer and a dimer of the E6AP/E6 protomer. The short α1-helix of E6AP transforms into a longer helical structure when in complex with E6. The extended α1-helices of the dimer intersect symmetrically and contribute to the dimerization. The two protomers sway around the crossed region of the two α1-helices to promote the attachment and detachment of substrates to the catalytic C-lobe of E6AP, thus facilitating ubiquitin transfer. These findings, complemented by mutagenesis analysis, suggest that the α1-helix, through conformational transformations, controls the transition between the inactive monomer and the active dimer of E6AP.


Protein Multimerization , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Humans , Ubiquitin/metabolism , Ubiquitin/chemistry , Ubiquitination , Models, Molecular , Crystallography, X-Ray , Oncogene Proteins, Viral/metabolism , Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Protein Binding , Protein Conformation, alpha-Helical
6.
Clin Exp Pharmacol Physiol ; 51(6): e13864, 2024 Jun.
Article En | MEDLINE | ID: mdl-38679464

Human papillomavirus (HPV) infection has been reported to be associated with N6-methyladenosine (m6A) modification in cancers. However, the underlying mechanism by which m6A methylation participates in HPV-related cervical squamous cell carcinoma (CSCC) remains largely unclear. In this study, we observed that m6A regulators methyltransferase like protein (METTL14) and insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) were upregulated in HPV-positive CSCC tissues and cell lines, and their high expression predicted poor prognosis for HPV-infected CSCC patients. Cellular functional experiments verified that HPV16 oncogenes E6/E7 upregulated the expression of METTL14 and IGF2BP3 to promote cell proliferation and epithelial mesenchymal transition of CSCC cells. Next, we found that E6/E7 stabilized fascin actin-bundling protein 1 (FSCN1) mRNA and elevated FSCN1 expression in CSCC cells through upregulating METTL14/IGF2BP3-mediated m6A modification, and FSCN1 expression was also validated to be positively associated with worse outcomes of HPV-positive CSCC patients. Finally, HPV16-positive CSCC cell lines SiHa and CaSki were transfected with knockdown vector for E6/E7 or METTL14/IGF2BP3 and overexpressing vector for FSCN1, and functional verification experiments were performed through using MTT assay, flow cytometry, wound healing assay and tumour formation assay. Results indicated that knockdown of E6/E7 or METTL14/IGF2BP3 suppressed cell proliferation, migration and tumorigenesis, and accelerated cell apoptosis of HPV-positive CSCC cells. Their tumour-suppressive effects were abolished through overexpressing FSCN1. Overall, HPV E6/E7 advanced CSCC development through upregulating METTL14/IGF2BP3-mediated FSCN1 m6A modification.


Adenosine , Adenosine/analogs & derivatives , Carrier Proteins , Cell Proliferation , Human papillomavirus 16 , Methyltransferases , Microfilament Proteins , Oncogene Proteins, Viral , Papillomavirus Infections , RNA-Binding Proteins , Repressor Proteins , Uterine Cervical Neoplasms , Humans , Methyltransferases/metabolism , Methyltransferases/genetics , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Female , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Adenosine/metabolism , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Papillomavirus Infections/metabolism , Papillomavirus Infections/pathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Cell Line, Tumor , Methylation , Cell Proliferation/genetics , Carcinoma, Squamous Cell/virology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition/genetics
7.
J Med Virol ; 96(5): e29630, 2024 May.
Article En | MEDLINE | ID: mdl-38659368

The human papillomavirus type 16 (HPV16) causes a large fraction of genital and oropharyngeal carcinomas. To maintain the transformed state, the tumor cells must continuously synthesize the E6 and E7 viral oncoproteins, which makes them tumor-specific antigens. Indeed, specific T cell responses against them have been well documented and CD8+ T cells engineered to express T cell receptors (TCRs) that recognize epitopes of E6 or E7 have been tested in clinical studies with promising results, yet with limited clinical success. Using CD8+ T cells from peripheral blood of healthy donors, we have identified two novel TCRs reactive to an unexplored E618-26 epitope. These TCRs showed limited standalone cytotoxicity against E618-26-HLA-A*02:01-presenting tumor cells. However, a single-signaling domain chimeric antigen receptor (ssdCAR) targeting L1CAM, a cell adhesion protein frequently overexpressed in HPV16-induced cancer, prompted a synergistic effect that significantly enhanced the cytotoxic capacity of NK-92/CD3/CD8 cells armored with both TCR and ssdCAR when both receptors simultaneously engaged their respective targets, as shown by live microscopy of 2-D and 3-D co-cultures. Thus, virus-specific TCRs from the CD8+ T cell repertoire of healthy donors can be combined with a suitable ssdCAR to enhance the cytotoxic capacity of the effector cells and, indirectly, their specificity.


CD8-Positive T-Lymphocytes , Oncogene Proteins, Viral , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , Repressor Proteins , Humans , Oncogene Proteins, Viral/immunology , Oncogene Proteins, Viral/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Repressor Proteins/immunology , Repressor Proteins/genetics , CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/immunology , Human papillomavirus 16/immunology , Human papillomavirus 16/genetics , Cytotoxicity, Immunologic , Cell Line, Tumor
8.
Virology ; 594: 110058, 2024 06.
Article En | MEDLINE | ID: mdl-38520797

HPV16, with typical mutations that differ in geographical distribution and carcinogenic potency, has implications for cervical cancer screening, clinical diagnosis, and treatment. DNASTAR and MEGA were used to identify HPV16 variants and construct a phylogenetic tree. The most prevalent HPV genotypes were HPV16 (63.9%), HPV18 (26.7%), and other HPV (6.9%). HPV16 alterations were found in all E6, E7, and L1 genes, including 15 missense and 18 synonymous mutations. Missense mutations include R10G, Q14H, D25E, H78Y, L83V (E6); M29V, R35K, L78R, L95P (E7); H73Y, T176 N, N178T, T317P, T386S, L472F/I (L1). HPV16 sublineages include A1 (17.2%), A2 (0.9%), A3 (56.0%), A4 (19.0%), D1 (4.3%), and D3 (2.6%). Although several mutations in the oncoproteins E6, E7, and L1 have been detected, mutations known to be associated with cervical cancer risk, such as D25E and L83V, occur at a relatively low frequency. This suggests that HPV16 mutations are associated with cervical cancer through a complicated mechanism.


Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/epidemiology , Human papillomavirus 16/genetics , Human Papillomavirus Viruses , Genetic Variation , Oncogene Proteins, Viral/genetics , Vietnam/epidemiology , Phylogeny , Early Detection of Cancer/adverse effects , Papillomavirus E7 Proteins/genetics
9.
Redox Biol ; 71: 103108, 2024 May.
Article En | MEDLINE | ID: mdl-38457903

High-risk human papillomaviruses (HPVs) are the causative agents of cervical cancer. Here, we report that HPV16 E6E7 promotes cervical cancer cell proliferation by activating the pentose phosphate pathway (PPP). We found that HPV16 E6 activates the PPP primarily by increasing glucose-6-phosphate dehydrogenase (G6PD) enzyme activity. Mechanistically, HPV16 E6 promoted G6PD dimer formation by inhibiting its lactylation. Importantly, we suggest that G6PD K45 was lactylated during G6PD-mediated antioxidant stress. In primary human keratinocytes and an HPV-negative cervical cancer C33A cells line ectopically expressing HPV16 E6, the transduction of G6PD K45A (unable to be lactylated) increased GSH and NADPH levels and, correspondingly, decreasing ROS levels. Conversely, the re-expression of G6PD K45T (mimicking constitutive lactylation) in HPV16-positive SiHa cells line inhibited cell proliferation. In vivo, the inhibition of G6PD enzyme activity with 6-aminonicotinamide (6-An) or the re-expression of G6PD K45T inhibited tumor proliferation. In conclusion, we have revealed a novel mechanism of HPV oncoprotein-mediated malignant transformation. These findings might provide effective strategies for treating cervical and HPV-associated cancers.


Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , Cell Line, Tumor , Uterine Cervical Neoplasms/metabolism , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Pentose Phosphate Pathway , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Cell Proliferation
10.
Clin Epigenetics ; 16(1): 40, 2024 03 10.
Article En | MEDLINE | ID: mdl-38461243

BACKGROUND: MAL (T-lymphocyte maturation-associated protein) is highly downregulated in most cancers, including cervical cancer (CaCx), attributable to promoter hypermethylation. Long noncoding RNA genes (lncGs) play pivotal roles in CaCx pathogenesis, by interacting with human papillomavirus (HPV)-encoded oncoproteins, and epigenetically regulating coding gene expression. Hence, we attempted to decipher the impact and underlying mechanisms of MAL downregulation in HPV16-related CaCx pathogenesis, by interrogating the interactive roles of MAL antisense lncRNA AC103563.8, E7 oncoprotein and PRC2 complex protein, EZH2. RESULTS: Employing strand-specific RNA-sequencing, we confirmed the downregulated expression of MAL in association with poor overall survival of CaCx patients bearing HPV16, along with its antisense long noncoding RNA (lncRNA) AC103563.8. The strength of positive correlation between MAL and AC103563.8 was significantly high among patients compared to normal individuals. While downregulated expression of MAL was significantly associated with poor overall survival of CaCx patients bearing HPV16, AC103563.8 did not reveal any such association. We confirmed the enrichment of chromatin suppressive mark, H3K27me3 at MAL promoter, using ChIP-qPCR in HPV16-positive SiHa cells. Subsequent E7 knockdown in such cells significantly increased MAL expression, concomitant with decreased EZH2 expression and H3K27me3 marks at MAL promoter. In silico analysis revealed that both E7 and EZH2 bear the potential of interacting with AC103563.8, at the same binding domain. RNA immunoprecipitation with anti-EZH2 and anti-E7 antibodies, respectively, and subsequent quantitative PCR analysis in E7-silenced and unperturbed SiHa cells confirmed the interaction of AC103563.8 with EZH2 and E7, respectively. Apparently, AC103563.8 seems to preclude EZH2 and bind with E7, failing to block EZH2 function in patients. Thereby, enhanced EZH2 expression in the presence of E7 could potentially inactivate the MAL promoter through H3K27me3 marks, corroborating our previous results of MAL expression downregulation in patients. CONCLUSION: AC103563.8-E7-EZH2 axis, therefore, appears to crucially regulate the expression of MAL, through chromatin inactivation in HPV16-CaCx pathogenesis, warranting therapeutic strategy development.


Myelin and Lymphocyte-Associated Proteolipid Proteins , Oncogene Proteins, Viral , RNA, Long Noncoding , Uterine Cervical Neoplasms , Female , Humans , Chromatin/metabolism , DNA Methylation , Down-Regulation , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones/metabolism , Human papillomavirus 16/genetics , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Uterine Cervical Neoplasms/pathology , Myelin and Lymphocyte-Associated Proteolipid Proteins/genetics , Myelin and Lymphocyte-Associated Proteolipid Proteins/metabolism
11.
Mol Cancer ; 23(1): 46, 2024 03 08.
Article En | MEDLINE | ID: mdl-38459592

Nucleic acid vaccines have shown promising potency and efficacy for cancer treatment with robust and specific T-cell responses. Improving the immunogenicity of delivered antigens helps to extend therapeutic efficacy and reduce dose-dependent toxicity. Here, we systematically evaluated chemokine-fused HPV16 E6/E7 antigen to improve the cellular and humoral immune responses induced by nucleotide vaccines in vivo. We found that fusion with different chemokines shifted the nature of the immune response against the antigens. Although a number of chemokines were able to amplify specific CD8 + T-cell or humoral response alone or simultaneously. CCL11 was identified as the most potent chemokine in improving immunogenicity, promoting specific CD8 + T-cell stemness and generating tumor rejection. Fusing CCL11 with E6/E7 antigen as a therapeutic DNA vaccine significantly improved treatment effectiveness and caused eradication of established large tumors in 92% tumor-bearing mice (n = 25). Fusion antigens with CCL11 expanded the TCR diversity of specific T cells and induced the infiltration of activated specific T cells, neutrophils, macrophages and dendritic cells (DCs) into the tumor, which created a comprehensive immune microenvironment lethal to tumor. Combination of the DNA vaccine with anti-CTLA4 treatment further enhanced the therapeutic effect. In addition, CCL11 could also be used for mRNA vaccine design. To summarize, CCL11 might be a potent T cell enhancer against cancer.


Cancer Vaccines , Neoplasms , Oncogene Proteins, Viral , Papillomavirus Vaccines , Vaccines, DNA , Animals , Mice , Nucleic Acid-Based Vaccines , Vaccines, DNA/genetics , Papillomavirus Vaccines/genetics , Neoplasms/genetics , Neoplasms/therapy , CD8-Positive T-Lymphocytes , Papillomavirus E7 Proteins/genetics , Oncogene Proteins, Viral/genetics , Mice, Inbred C57BL , Tumor Microenvironment
12.
Mol Biol Rep ; 51(1): 411, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38466465

BACKGROUND: This study examined the viral load and physical status of the human papillomavirus 16 (HPV-16) genome in non-cancerous, precancerous and cancerous cervical lesions. METHODS: Quantitative real-time PCR was performed to determine HPV-16 E2 and E6 viral load in 132 cervical specimens. E2/E6 viral load ratio was used to determine the physical status of HPV-16 genome. RESULTS: E2 gene viral load was a significant (P < 0.001) predicting biomarker in differentiating non-cancerous from precancerous and cancerous samples. E6 gene viral load was significantly different between the groups (P < 0.001). The specificity and sensitivity of E2 and E6 in distinguishing SCC samples were 100% and 95% respectively. CONCLUSION: HPV-16 viral load measured through E2 and E6 genes is a reliable indicator of lesion type.


Oncogene Proteins, Viral , Papillomavirus Infections , Precancerous Conditions , Uterine Cervical Neoplasms , Female , Humans , Human papillomavirus 16/genetics , Uterine Cervical Neoplasms/pathology , DNA-Binding Proteins/genetics , Iran , Oncogene Proteins, Viral/genetics , Viral Load/genetics , DNA, Viral/genetics
13.
Biol Cell ; 116(4): e202300072, 2024 Apr.
Article En | MEDLINE | ID: mdl-38514439

BACKGROUND INFORMATION: The precise etiology of breast cancer is not completely understood, although women with BRCA1 gene mutations have a significantly increased risk of developing the disease. In addition, sporadic breast cancer is frequently associated with decreased BRCA1 gene expression. Growing evidence of Human papillomaviruses (HPVs) infections in breast tumors has raised the possibility of the involvement of HPVs in the pathogenesis of breast cancer. We investigated whether the effects of HPV oncoproteins E6 and E7 were influenced by the expression levels of BRCA1. HPV16E6E7 (prototype or E6D25E/E7N29S Asian variant type) were stably expressed in MDA-MB231 breast cancer cells, wild type for BRCA1, or with BRCA1 knocked down. RESULTS: Expression of HPV16E6E7 oncogenes did not affect BRCA1 levels and the abundance of HPV16E6E7 was not altered by BRCA1 knockdown. BRCA1 levels did not alter HPV16E6E7-dependent degradation of G1-S cell cycle proteins p53 and pRb. However, we found that the expression of G2-M cell cycle protein cyclin B1 enhanced by HPV16E6E7 was impacted by BRCA1 levels. Especially, we found the correlation between BRCA1 and cyclin B1 expression and this was also confirmed in breast cancer samples from a Thai cohort. We further demonstrated that the combination of HPV oncoproteins and low levels of BRCA1 protein appears to enhance proliferation and invasion. Transactivation activities of HPV16E6E7 on genes regulating cell proliferation and invasion (TGF-ß and vimentin) were significantly increased in BRCA1-deficient cells. CONCLUSIONS: Our results indicate that a deficiency of BRCA1 promotes the transactivation activity of HPV16E6E7 leading to increase of cell proliferation and invasion. SIGNIFICANCE: HPV infection appears to have the potential to enhance the aggressiveness of breast cancers, especially those deficient in BRCA1.


Breast Neoplasms , Oncogene Proteins, Viral , Papillomavirus Infections , Female , Humans , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , Cyclin B1/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/genetics , Papillomavirus Infections/genetics , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism
14.
Nat Commun ; 15(1): 1842, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38418456

Human papillomavirus (HPV) is a significant contributor to the global cancer burden, and its carcinogenic activity is facilitated in part by the HPV early protein 6 (E6), which interacts with the E3-ligase E6AP, also known as UBE3A, to promote degradation of the tumor suppressor, p53. In this study, we present a single-particle cryoEM structure of the full-length E6AP protein in complex with HPV16 E6 (16E6) and p53, determined at a resolution of ~3.3 Å. Our structure reveals extensive protein-protein interactions between 16E6 and E6AP, explaining their picomolar binding affinity. These findings shed light on the molecular basis of the ternary complex, which has been pursued as a potential therapeutic target for HPV-driven cervical, anal, and oropharyngeal cancers over the last two decades. Understanding the structural and mechanistic underpinnings of this complex is crucial for developing effective therapies to combat HPV-induced cancers. Our findings may help to explain why previous attempts to disrupt this complex have failed to generate therapeutic modalities and suggest that current strategies should be reevaluated.


Oncogene Proteins, Viral , Papillomavirus Infections , Humans , Tumor Suppressor Protein p53/metabolism , Human papillomavirus 16/metabolism , Ubiquitin-Protein Ligases/metabolism , Oncogene Proteins, Viral/genetics , Genes, Tumor Suppressor
15.
Front Immunol ; 15: 1335302, 2024.
Article En | MEDLINE | ID: mdl-38370412

Human papillomaviruses (HPVs) are a major cause of cancer. While surgical intervention remains effective for a majority of HPV-caused cancers, the urgent need for medical treatments targeting HPV-infected cells persists. The pivotal early genes E6 and E7, which are under the control of the viral genome's long control region (LCR), play a crucial role in infection and HPV-induced oncogenesis, as well as immune evasion. In this study, proteomic analysis of endosomes uncovered the co-internalization of ErbB2 receptor tyrosine kinase, also called HER2/neu, with HPV16 particles from the plasma membrane. Although ErbB2 overexpression has been associated with cervical cancer, its influence on HPV infection stages was previously unknown. Therefore, we investigated the role of ErbB2 in HPV infection, focusing on HPV16. Through siRNA-mediated knockdown and pharmacological inhibition studies, we found that HPV16 entry is independent of ErbB2. Instead, our signal transduction and promoter assays unveiled a concentration- and activation-dependent regulatory role of ErbB2 on the HPV16 LCR by supporting viral promoter activity. We also found that ErbB2's nuclear localization signal was not essential for LCR activity, but rather the cellular ErbB2 protein level and activation status that were inhibited by tucatinib and CP-724714. These ErbB2-specific tyrosine kinase inhibitors as well as ErbB2 depletion significantly influenced the downstream Akt and ERK signaling pathways and LCR activity. Experiments encompassing low-risk HPV11 and high-risk HPV18 LCRs uncovered, beyond HPV16, the importance of ErbB2 in the general regulation of the HPV early promoter. Expanding our investigation to directly assess the impact of ErbB2 on viral gene expression, quantitative analysis of E6 and E7 transcript levels in HPV16 and HPV18 transformed cell lines unveiled a noteworthy decrease in oncogene expression following ErbB2 depletion, concomitant with the downregulation of Akt and ERK signaling pathways. In light of these findings, we propose that ErbB2 holds promise as potential target for treating HPV infections and HPV-associated malignancies by silencing viral gene expression.


Oncogene Proteins, Viral , Papillomavirus Infections , Humans , Cell Line, Tumor , Human papillomavirus 16/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Repressor Proteins/metabolism
16.
Asian Pac J Cancer Prev ; 25(2): 521-527, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38415538

OBJECTIVE: The study aimed to evaluate E6 and E7 oncoproteins of HPV16 and HPV18 expression in formalin - fixed paraffin embedded (FFPE) tissue in different grades of the cervical lesion and evaluate the potential use of E6 and E7 oncoproteins derived from HPV 16 and 18 as diagnostic protein biomarkers for triaging cervical lesions. METHODOLOGY: A total of 102 FFPE cervical tissues were collected from 2 tertiary hospitals and immunohistochemical reactivity staining of E6 and E7 oncoproteins of HPV16 and HPV18 were evaluated using immunoreactive scoring (IRS) system and analysed statistically. RESULT: The result showed an increased oncoprotein expression with the progression of cervical lesions. There is a statistically significant association between histology grade and HPV16/18-E6 expression (p = 0.028). However, there are no significant association of histological grade to HPV16-E7 immunoreactivity score (p = 0.264) and HPV18-E7 (p=0.080). CONCLUSION: The immunohistochemical expression of HPV oncoproteins is a potential alternative diagnostic tool applicable in a low-resource laboratory setting. The advantage of the histochemical evaluation is that this method is simpler to apply and less expensive in comparison to in situ mRNA hybridization. Nevertheless, our study also found that antibodies against HPV that are commercially available suffer quite substantial specificity issues such as background staining and inconsistency between different batches. Hence, the utilization of antibody-based staining warrants stringent quality control.


Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Uterine Cervical Neoplasms/pathology , Oncogene Proteins, Viral/genetics , Papillomavirus E7 Proteins/genetics
17.
Viruses ; 16(2)2024 01 26.
Article En | MEDLINE | ID: mdl-38399969

The high incidence of epithelial malignancies in HIV-1 infected individuals is associated with co-infection with oncogenic viruses, such as high-risk human papillomaviruses (HR HPVs), mostly HPV16. The molecular mechanisms underlying the HIV-1-associated increase in epithelial malignancies are not fully understood. A collaboration between HIV-1 and HR HPVs in the malignant transformation of epithelial cells has long been anticipated. Here, we delineated the effects of HIV-1 reverse transcriptase on the in vitro and in vivo properties of HPV16-infected cervical cancer cells. A human cervical carcinoma cell line infected with HPV16 (Ca Ski) was made to express HIV-1 reverse transcriptase (RT) by lentiviral transduction. The levels of the mRNA of the E6 isoforms and of the factors characteristic to the epithelial/mesenchymal transition were assessed by real-time RT-PCR. The parameters of glycolysis and mitochondrial respiration were determined using Seahorse technology. RT expressing Ca Ski subclones were assessed for the capacity to form tumors in nude mice. RT expression increased the expression of the E6*I isoform, modulated the expression of E-CADHERIN and VIMENTIN, indicating the presence of a hybrid epithelial/mesenchymal phenotype, enhanced glycolysis, and inhibited mitochondrial respiration. In addition, the expression of RT induced phenotypic alterations impacting cell motility, clonogenic activity, and the capacity of Ca Ski cells to form tumors in nude mice. These findings suggest that HIV-RT, a multifunctional protein, affects HPV16-induced oncogenesis, which is achieved through modulation of the expression of the E6 oncoprotein. These results highlight a complex interplay between HIV antigens and HPV oncoproteins potentiating the malignant transformation of epithelial cells.


Carcinoma, Squamous Cell , HIV Reverse Transcriptase , Oncogene Proteins, Viral , Uterine Cervical Neoplasms , Animals , Mice , Humans , Female , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/genetics , Human papillomavirus 16/physiology , Mice, Nude , Repressor Proteins/genetics , Epithelial Cells/metabolism , Phenotype
18.
J Med Virol ; 96(2): e29473, 2024 Feb.
Article En | MEDLINE | ID: mdl-38362929

Human papillomaviruses (HPVs) cause more than 4.5% of all cancer in the world and more than half of these cases are attributed to human papillomavirus type 16 (HPV16). Prophylactic vaccines are available but antiviral drugs are not. Novel targets for therapy are urgently needed. Alternative RNA splicing is extensively used by HPVs to express all their genes and HPV16 is no exception. This process must function to perfection since mis-splicing could perturb the HPV gene expression program by altering mRNA levels or by generating dysfunctional mRNAs. Cis-acting RNA elements on the viral mRNAs and their cognate cellular trans-acting factors control papillomavirus RNA splicing. The precise but delicate nature of the splicing process renders splicing sensitive to interference. As such, papillomavirus RNA splicing is a potential target for therapy. Here we summarize our current understanding of cis-acting HPV16 RNA elements that control HPV16 mRNA splicing via cellular proteins and discuss how they may be exploited as targets for therapy to papillomavirus infections and cancer.


Neoplasms , Oncogene Proteins, Viral , Papillomavirus Infections , Humans , Oncogene Proteins, Viral/genetics , RNA Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Human Papillomavirus Viruses , Papillomavirus Infections/drug therapy
19.
PLoS One ; 19(2): e0298815, 2024.
Article En | MEDLINE | ID: mdl-38363779

OBJECTIVE: To investigate the anti-cancer efficacy of ENB101-LNP, an ionizable lipid nanoparticles (LNPs) encapsulating siRNA against E6/E7 of HPV 16, in combination therapy with cisplatin in cervical cancer in vitro and in vivo. METHODS: CaSki cells were treated with ENB101-LNP, cisplatin, or combination. Cell viability assessed the cytotoxicity of the treatment. HPV16 E6/E7 gene knockdown was verified with RT-PCR both in vitro and in vivo. HLA class I and PD-L1 were checked by flow cytometry. A xenograft model was made using CaSki cells in BALB/c nude mice. To evaluate anticancer efficacy, mice were grouped. ENB101-LNP was given three times weekly for 3 weeks intravenously, and cisplatin was given once weekly intraperitoneally. Tumor growth was monitored. On day 25, mice were euthanized; tumors were collected, weighed, and imaged. Tumor samples were analyzed through histopathology, immunostaining, and western blot. RESULTS: ENB101-LNP and cisplatin synergistically inhibit CaSki cell growth. The combination reduces HPV 16 E6/E7 mRNA and boosts p21 mRNA, p53, p21, and HLA class I proteins. In mice, the treatment significantly blocked tumor growth and promoted apoptosis. Tumor inhibition rates were 29.7% (1 mpk ENB101-LNP), 29.6% (3 mpk), 34.0% (cisplatin), 47.0% (1 mpk ENB101-LNP-cisplatin), and 68.8% (3 mpk ENB101-LNP-cisplatin). RT-PCR confirmed up to 80% knockdown of HPV16 E6/E7 in the ENB101-LNP groups. Immunohistochemistry revealed increased p53, p21, and HLA-A expression with ENB101-LNP treatments, alone or combined. CONCLUSION: The combination of ENB101-LNP, which inhibits E6/E7 of HPV 16, with cisplatin, demonstrated significant anticancer activity in the xenograft mouse model of cervical cancer.


Liposomes , Nanoparticles , Oncogene Proteins, Viral , Uterine Cervical Neoplasms , Female , Humans , Animals , Mice , RNA, Small Interfering/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Mice, Nude , Heterografts , Cell Line, Tumor , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , RNA, Messenger/genetics
20.
Cancer Sci ; 115(4): 1102-1113, 2024 Apr.
Article En | MEDLINE | ID: mdl-38287511

Worldwide prevalence of cervical cancer decreased significantly with the use of human papilloma virus (HPV)-targeted prophylactic vaccines. However, these multivalent antiviral vaccines are inert against established tumors, which leave patients with surgical ablative options possibly resulting in long-term reproductive complications and morbidity. In an attempt to bypass this unmet medical need, we designed a new E7 protein-based vaccine formulation using Accum™, a technology platform designed to promote endosome-to-cytosol escape as a means to enhance protein accumulation in target cells. Prophylactic vaccination of immunocompetent mice using the Accum-E7 vaccine (aE7) leads to complete protection from cervical cancer despite multiple challenges conducted with ascending C3.43 cellular doses (0.5-, 1.0-, and 2.0 × 106 cells). Moreover, the humoral response induced by aE7 was higher in magnitude compared with naked E7 protein vaccination and displayed potent inhibitory effects on C3.43 proliferation in vitro. When administered therapeutically to animals with pre-established C3.43 or Tal3 tumors, the vaccine-induced response synergized with multiple immune checkpoint blockers (anti-PD-1, anti-CTLA4, and anti-CD47) to effectively control tumor growth. Mechanistically, the observed therapeutic effect requires cross-presenting dendritic cells as well as CD8 T cells predominantly, with a non-negligible role played by both CD4+ and CD19+ lymphocytes. good laboratory practice (GLP) studies revealed that aE7 is immunogenic and well tolerated by immunocompetent mice with no observed adverse effects despite the use of a fourfold exceeding dose. In a nutshell, aE7 represents an ideal vaccine candidate for further clinical development as it uses a single engineered protein capable of exhibiting both prophylactic and therapeutic activity.


Cancer Vaccines , Oncogene Proteins, Viral , Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Female , Humans , Animals , Mice , Uterine Cervical Neoplasms/pathology , Papillomavirus E7 Proteins/metabolism , CD8-Positive T-Lymphocytes , Vaccination , Mice, Inbred C57BL , Papillomavirus Infections/prevention & control , Oncogene Proteins, Viral/genetics
...